Correction: An Automated, Adaptive Framework for Optimizing Preprocessing Pipelines in Task-Based Functional MRI

نویسندگان

  • Nathan W. Churchill
  • Robyn Spring
  • Babak Afshin-Pour
  • Fan Dong
  • Stephen C. Strother
چکیده

There is an error in Fig 6. Please view the correct Fig 6 here. There is an error in the second paragraph of the Results section under the subheading Validation 2: Estimating Brain-Behaviour Correlations. The correct paragraph should read: Fig 6a plots the median (ρbehav, gSNRbehav,) values for PLS analysis of every task, and both GNB and CVA analysis models. In general, IND optimization improves model performance. It significantly improves ρbehav for all models (p<0.001, bootstrapped significance) except TMT+GNB (significant at p<0.001) and REC+CVA(non-significant at p = 0.28). It also significantly improves gSNRbehav for all models except SART+CVA (marginally worse at p = 0.03). Fig 6b plots Z-scored maps of brain regions with the greatest behavioural correlations, for each task and pipeline of the CVA model. For REC and TMT, we observe similar activation patterns between CONS and IND-D pipelines, although IND-D produces higher reproducible Z-scores and more extensive activation regions for all tasks. Whereas for SART, CONS produces more extensive activation than IND-D, albeit with limited spatial specificity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Automated, Adaptive Framework for Optimizing Preprocessing Pipelines in Task-Based Functional MRI

BOLD fMRI is sensitive to blood-oxygenation changes correlated with brain function; however, it is limited by relatively weak signal and significant noise confounds. Many preprocessing algorithms have been developed to control noise and improve signal detection in fMRI. Although the chosen set of preprocessing and analysis steps (the "pipeline") significantly affects signal detection, pipelines...

متن کامل

Optimizing preprocessing and analysis pipelines for single-subject fMRI. I. Standard temporal motion and physiological noise correction methods.

Subject-specific artifacts caused by head motion and physiological noise are major confounds in BOLD fMRI analyses. However, there is little consensus on the optimal choice of data preprocessing steps to minimize these effects. To evaluate the effects of various preprocessing strategies, we present a framework which comprises a combination of (1) nonparametric testing including reproducibility ...

متن کامل

The minimal preprocessing pipelines for the Human Connectome Project

The Human Connectome Project (HCP) faces the challenging task of bringing multiple magnetic resonance imaging (MRI) modalities together in a common automated preprocessing framework across a large cohort of subjects. The MRI data acquired by the HCP differ in many ways from data acquired on conventional 3 Tesla scanners and often require newly developed preprocessing methods. We describe the mi...

متن کامل

An Efficient Framework for Accurate Arterial Input Selection in DSC-MRI of Glioma Brain Tumors

Introduction: Automatic arterial input function (AIF) selection has an essential role in quantification of cerebral perfusion parameters. The purpose of this study is to develop an optimal automatic method for AIF determination in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) of glioma brain tumors by using a new preprocessing method.Material and Methods: For this study, ...

متن کامل

An Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising

MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015